26 de dezembro de 2007

Energias - Parte 2...

ENERGIA EÓLICA

A energia eólica é a energia que provém do vento. O termo eólico vem do latim aeolicus, pertencente ou relativo a Éolo, deus dos ventos na mitologia grega e, portanto, pertencente ou relativo ao vento.

Conversão em energia mecânica

A energia eólica tem sido aproveitada desde a Antigüidade para mover os barcos impulsionados por velas ou para fazer funcionar a engrenagem de moinhos, ao mover suas pás. Nos moinhos de vento a energia eólica era transformada em energia mecânica, utilizada na moagem de grãos ou para bombear água. Os moinhos foram usados para fabricação de farinhas e ainda para drenagem de canais, sobretudo nos Países Baixos.

Conversão em energia elétrica

Na atualidade utiliza-se a energia eólica para mover aerogeradores - grandes turbinas colocadas em lugares de muito vento. Essas turbinas têm a forma de um cata-vento ou um moinho. Esse movimento, através de um gerador, produz energia elétrica. Precisam agrupar-se em parques eólicos, concentrações de aerogeradores, necessários para que a produção de energia se torne rentável, mas podem ser usados isoladamente, para alimentar localidades remotas e distantes da rede de transmissão. É possível ainda a utilização de aerogeradores de baixa tensão quando se trate de requisitos limitados de energia elétrica.

A energia eólica é hoje considerada uma das mais promissoras fontes naturais de energia, principalmente porque é renovável, ou seja, não se esgota. Além disso, as turbinas eólicas podem ser utilizadas tanto em conexão com redes elétricas como em lugares isolados.

Em 2005 a capacidade mundial de geração de energia elétrica através da energia eólica era de aproximadamente 59 gigawatts, - o suficiente para abastecer as necessidades básicas de um país como o Brasil - embora isso represente menos de 1% do uso mundial de energia.

Em alguns países a energia elétrica gerada a partir do vento representa significativa parcela da demanda. Na Dinamarca esta representa 23% da produção, 6% na Alemanha e cerca de 8% em Portugal (dados de setembro de 2007) e na Espanha. Globalmente, a geração através de energia eólica mais que quadruplicou entre 1999 e 2005.

A energia eólica é renovável, limpa, amplamente distribuída globalmente, e, se utilizada para substituir fontes de combustíveis fósseis, auxilia na redução do efeito-estufa.

O custo da geração de energia eólica tem caído rapidamente nos últimos anos. Em 2005 o custo da energia eólica era cerca de um quinto do que custava no final dos anos 90, e essa queda de custos deve continuar com a ascensão da tecnologia de produção de grandes aerogeradores. No ano de 2003 a energia eólica foi a forma de energia que mais cresceu nos Estados Unidos.

A maioria das formas de geração de eletricidade requer altíssimos investimentos de capital, e baixos custos de manutenção. Isto é particularmente verdade para o caso da energia eólica, onde os custos com a construção de cada aerogerador pode ficar na casa dos milhões de reais, os custos com manutenção são baixos e o custo com combustível é zero. Na composição do cálculo de investimento e custo nesta forma de energia levam-se em conta diversos fatores, como a produção anual estimada, as taxas de juros, os custos de construção, de manutenção, de localização e os riscos de queda dos geradores. Sendo assim os cálculos sobre o real custo de produção da energia eólica diferem muito, de acordo com a localização de cada usina.

Apesar da grandiosidade dos modernos moinhos de vento, a tecnologia utilizada continua a mesma de há 1.000 anos, tudo indicando que brevemente será suplantada por outras tecnologias de maior eficiência, como é o caso da turbovela, uma voluta vertical apropriada para capturar vento a baixa pressão ao passar nos rotores axiais protegidos internamente. Esse tipo não oferece riscos de colisões das pás com objetos voadores (animais silvestres) e não interfere na audio-visão. Essa tecnologia já é uma realidade que tanto pode ser introduzida no meio ambiente marinho como no terrestre.

Aplicações dos Sistemas Eólicos

Um sistema eólico pode ser utilizado em três aplicações distintas: sistemas isolados, sistemas híbridos e sistemas interligados à rede. Os sistemas obedecem a uma configuração básica, necessitam de uma unidade de controle de potência e, em determinados casos, conforme a aplicação, de uma unidade de armazenamento.

Sistemas Isolados: Os sistemas isolados de pequeno porte, em geral, utilizam alguma forma de armazenamento de energia. Este armazenamento pode ser feito através de baterias ou na forma de energia potencial gravitacional com a finalidade de armazenar a água bombeada em reservatórios elevados para posterior utilização. Alguns sistemas isolados não necessitam de armazenamento, como no caso dos sistemas para irrigação onde toda a água bombeada é diretamente consumida.Os sistemas que armazenam energia em baterias necessitam de um dispositivo para controlar a carga e a descarga da bateria. O controlador de carga tem como principal objetivo não deixar que haja danos ao sistema de bateria por sobrecargas ou descargas profundas.

Para alimentação de equipamentos que operam com corrente alternada (CA) é necessário a utilização de um inversor. Este inversor pode ser de estado sólido (eletrônico) ou rotativo (mecânico).

Sistemas Híbridos: Os sistemas híbridos são aqueles que apresentam mais de uma fonte de energia como, por exemplo, turbinas eólicas, geradores Diesel, módulos fotovoltaicos, entre outras. A utilização de várias formas de geração de energia elétrica aumenta a complexidade do sistema e exige a otimização do uso de cada uma das fontes. Nesses casos, é necessário realizar um controle de todas as fontes para que haja máxima eficiência e otimização dos fluxos energéticos na entrega da energia para o usuário.

Em geral, os sistemas híbridos são empregados em sistemas de médio porte destinados a atender um número maior de usuários. Por trabalhar com cargas em corrente alternada, o sistema híbrido também necessita de um inversor. Devido à grande complexidade de arranjos e multiplicidade de opções, a forma de otimização do sistema torna-se um estudo particular a cada caso.

Sistemas Interligados à Rede: Os sistemas interligados à rede não necessitam de sistemas de armazenamento de energia pois toda a geração é entregue diretamente à rede elétrica. Estes sistemas representam uma fonte complementar ao sistema elétrico de grande porte ao qual estão interligados.

Os sistemas eólicos interligados à rede apresentam as vantagens inerentes aos sistemas de geração distribuída tais como: a redução de perdas, o custo evitado de expansão de rede e a geração na hora de ponta quando o regime dos ventos coincide com o pico da curva de carga.

Veja aqui um tutorial completo sobre energia eólica

Energia Eólica e Meio Ambiente

A energia eólica é considerada das mais limpas do planeta, disponível em diversos lugares e em diferentes intensidades, uma boa alternativa às energias não-renováveis.

Apesar de não queimarem combustíveis fósseis e não emitirem poluentes, fazendas eólicas não são totalmente desprovidas de impactos ambientais. Elas alteram paisagens com suas torres e hélices e podem ameaçar pássaros se forem instaladas em rotas de migração. Emitem um certo nível de ruído (de baixa freqüência), que pode causar algum incômodo. Além disso, podem causar interferência na transmissão de televisão.

O custo dos geradores eólicos é elevado, porém o vento é uma fonte inesgotável de energia. E as plantas eólicas têm uma retorno financeiro a um curto prazo.

Outro problema que pode se citado é que em regiões onde o vento não é constante, ou a intensidade é muito fraca, obtêm-se pouca energia e quando ocorrem chuvas muito fortes, há desperdício de energia.

Leia aqui um artigo que analisa o contexto atual da energia eólica

Lei de BETZ

Quanto maior for a energia cinética extraída do vento pelo aerogerador, maior será a travagem que sofrerá o vento que deixa o aerogerador. Se teoricamente fosse possível extrair toda a energia do vento, o ar sairia com velocidade nula, ou melhor, o ar não poderia abandonar a turbina. Nesse caso não seria possível extrair nenhuma energia, uma vez que também não entraria ar no rotor do aerogerador. No outro caso extremo, consideramos o ar a passar por um tubo de vento sem nenhum impedimento, também não será possível extrair energia do vento. Entre estes dois extremos existe um valor para o qual e mais eficiente a conversão da energia do vento em energia mecânica: um aerogerador ira travar até cerca de 2/3 da sua velocidade inicial. Este valor obtêm-se da formulação de 1919, realizada pelo físico Albert Betz, e conhecida como Lei de Betz.

A Lei de Betz diz que só se pode converter menos de 16/27 (59%) da energia cinética em energia mecânica ao utilizar um aerogerador. A potência varia com o cubo da velocidade do vento, e proporcionalmente com a densidade do ar. A maior parte da energia eólica está localizada acima da velocidade média do vento de projeto. Para a produção de energia elétrica em grande escala só locais com valores de velocidades média anuais superiores a 6 m/seg são interessantes, abaixo deste valor já não existe viabilidade para este tipo de aplicações. De fato a velocidade à qual os aerogeradores começam a rodar situa-se nos 3-5 m/s (velocidade de ligação), no entanto abaixo de 5 m/s a quantidade de energia no vento é muito baixa, e a turbina apenas começa a funcionar por volta dos 5 m/s. Os valores ideais de aproveitamento andam a volta do 9-10 m/seg, no entanto as turbinas podem ser desenhadas para uma eficiência máxima dependendo da zona de velocidade de vento onde esteja a maior parte da energia. O valor limite estrutural para as turbinas anda a volta do 25 m/seg (velocidade de corte). A estas velocidades as turbinas tem de ser capazes de dissipar a energia em excesso.

Fonte: Portal das Energias Renováveis

Nenhum comentário: